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[1] Real-time forecasts of PM2.5 aerosol mass from seven air quality forecast models
(AQFMs) are statistically evaluated against observations collected in the northeastern
United States and southeastern Canada from two surface networks and aircraft data during
the summer of 2004 International Consortium for Atmospheric Research on Transport
and Transformation (ICARTT)/New England Air Quality Study (NEAQS) field campaign.
The AIRNOW surface network is used to evaluate PM2.5 aerosol mass, the U.S. EPA STN
network is used for PM2.5 aerosol composition comparisons, and aerosol size distribution
and composition measured from the NOAA P-3 aircraft are also compared. Statistics
based on midday 8-hour averages, as well as 24-hour averages are evaluated against the
AIRNOW surface network. When the 8-hour average PM2.5 statistics are compared
against equivalent ozone statistics for each model, the analysis shows that PM2.5 forecasts
possess nearly equivalent correlation, less bias, and better skill relative to the
corresponding ozone forecasts. An analysis of the diurnal variability shows that most
models do not reproduce the observed diurnal cycle at urban and suburban monitor
locations, particularly during the nighttime to early morning transition. While observations
show median rural PM2.5 levels similar to urban and suburban values, the models display
noticeably smaller rural/urban PM2.5 ratios. The ensemble PM2.5 forecast, created by
combining six separate forecasts with equal weighting, is also evaluated and shown to
yield the best possible forecast in terms of the statistical measures considered. The
comparisons of PM2.5 composition with NOAA P-3 aircraft data reveals two important
features: (1) The organic component of PM2.5 is significantly underpredicted by all the
AQFMs and (2) those models that include aqueous phase oxidation of SO2 to sulfate in
clouds overpredict sulfate levels while those AQFMs that do not include this
transformation mechanism underpredict sulfate. Errors in PM2.5 ammonium levels tend to
correlate directly with errors in sulfate. Comparisons of PM2.5 composition with the U.S.
EPA STN network for three of the AQFMs show that sulfate biases are consistently lower
at the surface than aloft. Recommendations for further research and analysis to help
improve PM2.5 forecasts are also provided.

Citation: McKeen, S., et al. (2007), Evaluation of several PM2.5 forecast models using data collected during the ICARTT/NEAQS
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1. Introduction

[2] Eulerian model based forecasts of ozone, a common
air pollutant, have been publicly available in the United

States and Canada for several years, while public forecasts
of other criteria pollutants, such as PM2.5 aerosol (particu-
late matter with diameter less than 2.5 mm), are more recent
and for the most part in a developmental stage. The need
and justification for forecasting ozone also apply to fore-
casting PM2.5 levels; there is a sufficient amount of clinical
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and epidemiological evidence to relate unhealthy levels of
PM2.5 to adverse health effects and hospital admittances.
PM2.5 also contributes adversely to visibility, and has both
direct and indirect effects on radiative forcing. Several
research centers have been forecasting PM2.5 levels on a
real-time basis over the past few years, and four research
centers in particular (NOAA/ESRL/GSD, EPA/NERL/
AMD, Meteorological Services of Canada, and University
of Iowa) provided PM2.5 forecasts during the summer of
2004 over eastern North America during the International
Consortium for Atmospheric Research on Transport and
Transformation (ICARTT)/New England Air Quality Study
(NEAQS) 2004 field experiment. This field program was
unique in that detailed and extensive measurements of
aerosol and aerosol composition were made over a large
region and from several different mobile platforms, allow-
ing for the evaluation of the various PM2.5 forecast models,
as well as the assorted processes that are treated with
numerical approximations within each model. Reliable,
high time resolution aircraft observations of PM2.5 specia-
tion are a recent development in measurement capability,
and provide a complementary and contrasting view of
model performance relative to comparisons restricted to
surface observations.
[3] The ICARTT/NEAQS-2004 field program also in-

cluded a real-time model evaluation project, in which real-
time forecasts of nine air quality models were collected at a
central facility (NOAA/ESRL/CSD), and the comparisons
with the U.S. EPA AIRNow ozone surface network, NOAA
Ronald H. Brown ship data, and University of New Hamp-
shire AIRMAP air quality network were made available to
study participants in near real-time. Five of these models
also forecast PM2.5, and two additional retrospective PM2.5

forecasts were made for the summer of 2004 that were also
submitted to the NOAA/ESRL/CSD lab. This collaboration
between various research centers allows for a more holistic
approach to comparisons with the observations, and has
been useful in quickly identifying deficiencies, irregularities
and inconsistencies common to all models, as well as
relative model performance.
[4] This work documents this multimodel comparison

approach to the PM2.5 forecasts for the summer of 2004.
Section 2 gives a brief review of previous Eulerian aerosol
modeling and the models used in this study. Model forecast
results are compared against three sets of observations
collected during that summer in the following three sec-
tions. Section 3 covers comparisons with the U.S. EPA
AIRNow PM2.5 monitoring network, and section 4 covers
comparisons with the NOAA P-3 aircraft during the inten-
sive phase of the field experiment. Comparisons of forecasts
from three of the models with data from the U.S. EPA
Speciation Trends Network are covered in section 5. Im-
portant results of the comparison are summarized in the
conclusion along with recommendations for further research
to improve forecasts.

2. Model Descriptions

2.1. Review of Existing Eulerian Models That
Predict PM2.5

[5] Although most current aerosol models tend to treat
the same major physical-chemical processes, there are

significant differences among models in their character-
ization of PM chemical composition and size distribution.
The major differences arise from treatments of gas phase
mechanism, aqueous chemistry, inorganic aerosol thermo-
dynamics, secondary organic aerosol formation, and cloud
processing (including wet deposition). Recent and com-
prehensive reviews of PM models are provided by
Seigneur [2001] and Seigneur and Moran [2004]. A brief
discussion of main differences in numerical methodology
is given below.
[6] The size distribution of aerosols in tropospheric air

quality models can be represented by the moment approach
[Yu et al., 2003], the modal approach [Binkowski and
Roselle, 2003], or the sectional approach [Zhang et al.,
2004]. In the simplest moment approach, only PM mass or
speciated PM mass is considered; this is the approach of
GOCART [Chin et al., 2000] (except for dust particles), and
the CHRONOS Canadian forecast model [Pudykiewicz et
al., 1997]. In the modal approach the particle size distribu-
tion is represented by the sum of several analytical func-
tions. The analytical functions are typically lognormal, each
characterized by total number concentration, median diam-
eter, and geometric standard deviation. The modal repre-
sentation is used in MADE/SORGAM (implemented in
WRF/CHEM [Grell et al., 2005]), one version of MOSAIC
[Fast et al., 2006], and RPM (implemented in CMAQ
[Binkowski and Roselle, 2003]). The sectional approach is
used in several air quality models, including CAM (imple-
mented in AURAMS [Gong et al., 2003]), CIT [Meng et al.,
1998], GATOR [Jacobson, 1997], MADM [Pilinis et al.,
2000], MADRID [Zhang et al., 2004], MOSAIC, SMOG
[Lu et al., 1997], STEM-2K3 [Tang et al., 2004], UAM-
AERO [Lurmann et al., 1997], and UAM-AIM [Sun and
Wexler, 1998]. In these models the particle size distribution
is approximated by a discrete number of size sections in
which the properties of all particles are assumed to be
uniform. Single-moment algorithms are most commonly
implemented in PM models that use sectional representa-
tion, with the single moment being aerosol volume
(or mass). In order to limit numerical diffusion and to
improve prediction of particle number, which is important
for determining aerosol indirect effect, two-moment algo-
rithms have also been implemented. Among urban and
regional applications, only GATOR, MADRID, and
MOSAIC use two-moment sectional algorithms. Two-
moment schemes have mostly been applied in global
models (TOMAS [Adams and Seinfeld, 2002], GLOMAP
[Spracklen et al., 2005], and GATOR). As a general rule,
the modal approach offers the advantage of being compu-
tationally efficient, whereas the sectional representation
provides more accuracy at the expense of computational
cost. Comparison of the modal and sectional approaches in
particle size representation is given by Zhang et al. [1999].
[7] PM models also differ in their treatment of gas-

particle equilibrium and mass transfer between the gas
and the particulate phases. The three major methods are
(1) the dynamic approach, (2) the equilibrium approach, and
(3) the hybrid approach. In theory, the dynamic approach
provides the most accurate representation of gas-particle
partition, but it is computationally expensive. The equilib-
rium approach, on the other hand, is computationally
efficient but can be inaccurate under certain ambient con-
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ditions. The hybrid approaches are attempts to provide the
best compromise between accuracy and computational
speed. The dynamic approach is implemented in CIT,
GATOR, MADM, MOSAIC, STEM-2K3, and UAM-
AIM. In the full dynamic approach, the mass transfer
between the gas and the particle phases is simulated
explicitly; the gas and particle phase concentrations of each
species may or may not be in equilibrium. In the equilib-
rium approach, the gas and the particulate phases are
assumed to be in chemical equilibrium. The equilibrium
assumption requires that all particles have the same chem-
ical composition for all species involved in gas-particle
equilibrium. The equilibrium approach is implemented in
RPM and CMAQ [Binkowski and Roselle, 2003], WRF/
CHEM [Ackermann et al., 1998], CHRONOS and AUR-
AMS (both use the ISORROPIA mechanism of Nenes et al.
[1998]). In one variation of the hybrid approach, the gas
phase is assumed to be in chemical equilibrium with the
whole particulate phase, but the distribution of condensable/
volatile species among the particles of different sizes is
determined by diffusion-limited assumptions. Unlike the
full equilibrium approach, the individual particles are not
in equilibrium with the gas phase. This type of hybrid
approached is implemented in CIT, UAM-AERO, and
AURAMS. A different variation of the hybrid approach,
proposed by Capaldo et al. [2000], is to assume full
equilibrium for particles with diameter less than a threshold
value (around 1 mm) and to use the dynamic approach for
the larger particles. This version of the hybrid approach is
implemented in MADRID. Zhang et al. [2000] and Koo et
al. [2003] examine the accuracy of the three approaches to
modeling gas/particle mass transfer. A review of inorganic
aerosol equilibrium modules used in PM models is provided
by Zhang et al. [2000].
[8] A major difference between PM models is that not all

models include aqueous phase oxidation of SO2 by H2O2 and
O3 as a source of aerosol sulfate. Global modeling studies
indicate that aqueous phase oxidation is a major sink pathway
of SO2 and contributes approximately 80% of the global
production rate of aerosol sulfate [e.g., Koch et al., 1999;
Barth et al., 2000]. Among the models studied in the work,
AURAMS, CMAQ/ETA, and STEM-2K3 include aqueous
phase oxidation. The CMAQ/ETA and STEM-2K3 models
assume equilibrium partitioning of SO2, H2O2 and O3 into
cloud liquid water using Henry’s Law, which is applicable
under most atmospheric conditions but can also lead to over-
prediction of aqueous phase reactions under certain conditions
due to mass transport limitation [Schwartz, 1988]. The AUR-
AMS model uses a kinetic mass transfer approach modified
from the equilibrium approach of Gong [2002].
[9] Most PM models require meteorological inputs (e.g.,

wind speed and direction, turbulence, radiation, clouds, and
precipitation) from a 3D host meteorological model or from
observations. A limitation of these models is that transport
and transformations of chemical and PM components are
decoupled from meteorological and radiation calculations.
Among urban and regional models, the exceptions are
GATOR, SMOG, and WRF/CHEM. These models include
detailed online treatments of meteorology, tracer transport,
chemistry, and PM processes that treats shorter timescale
interactions with meteorology relative to off-line formula-
tions. In addition, these models incorporate online calcula-

tion of PM optical properties, which allows for studying the
coupling of PM radiative forcing and meteorology. WRF/
CHEM has the ability to study the role of PM in redistrib-
uting and absorbing solar radiation using the MOSAIC PM
module [Fast et al., 2006]. However, for this study MADE/
SORGAM is used as the PM module in the WRF/CHEM
runs, and aerosol/radiation interactions are not explicitly
treated.

2.2. Air Quality Forecast Models (AQFMs)
Used in the Evaluation

[10] Seven models are incorporated within the following
PM2.5 model-measurement comparisons: WRF/CHEM-1
(27 km res.), WRF/CHEM-2 (27 km res.), WRF/CHEM-2
(12 km res.), AURAMS (42 km res.), CHRONOS (21 km
res.), STEM-2K3 (12 km res.) and CMAQ/ETA (12 km res.).
A fairly detailed description for most of these models,
relating in particular to model framework, initial and bound-
ary conditions, emissions, and gas phase oxidation mecha-
nisms, is given by McKeen et al. [2005]. Additional
information related to the treatment of PM2.5 is provided in
references associated with each model. For the NOAA/
ESRL/GSD WRF/CHEM models the treatment of PM2.5 is
covered by Grell et al. [2005]. The treatment of aerosols in
AURAMS is given by Gong et al. [2003], and for CHRO-
NOS in the work by Pudykiewicz et al. [1997]. A description
of the STEM-2K3 implementation of aerosols is given by
Tang et al. [2004]. The developmental CMAQ/ETA model
uses the same aerosol formalism as CMAQ described by
Binkowski and Roselle [2003] and updates as described by Yu
et al. [2007]. The aerosol size distribution is modeled as a
superposition of three lognormalmodels corresponding to the
ultrafine (diameter (Dp) < 0.1 mm), fine (0.1 mm < Dp <
2.5 mm), and coarse (Dp > 2.5 mm) particle sizes. Model
results for PM2.5 concentrations are obtained by summing
species concentrations over the first two modes. The two
WRF/CHEM-2 models are identical in terms of formulation
and physics options except for two important features: the
horizontal grid resolution (27 km versus 12 km) and the
parameterization of planetary boundary layer (PBL) transport.
[11] The forecast domains of the seven models within this

study are shown in Figure 1. The region of model overlap is
defined by the STEM-2K3 domain boundaries, but analysis
here is restricted to a slightly smaller area that excludes the
northwest corner of the STEM-2K3 domain and is the same
area defined for the O3 comparison and ensemble study of
McKeen et al. [2005]. All of the models except STEM-2K3
use fixed boundary conditions of PM2.5 mass and compo-
sition, and thus ignore PM2.5 sources outside the model
domain such as Asian pollution or dust events. The 12-km
resolution STEM-2K3 model is nested within a 60-km
resolution that covers much of North America. The time-
varying lateral and top boundary conditions of the 60-km
resolution model are driven by results from the MOZART-2
global chemical transport model [Horowitz et al., 2003], and
therefore include global sources to background PM.
[12] None of the models include sources of PM2.5 from

wildfires. Smoke and enhanced CO from forest fires orig-
inating in Alaska and western Canada were observed over
the continental United States during the summer of 2004
[Pfister et al., 2005]. Smoke and emissions from these fires
were also detected on several occasions during the ICARTT
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field study by the NOAA WP-3 aircraft [de Gouw et al.,
2005], mostly in the 2 to 5 km altitude range. As explained
in section 4, flight sections that intercepted smoke plumes
are eliminated in the model comparisons by using observa-
tions of acetonitrile, a chemical marker of wildfire emis-
sions, to window out those air masses modified by
wildfires. The impact these wildfire sources have on the
PM2.5 comparisons with surface monitors (sections 3 and 5)
are not as easy to dismiss or assess. Warneke et al. [2006]
show evidence that the emissions from the Alaskan/Canadian
wildfires impacted surface and low altitude aircraft measure-
ments over New England on one particular day, 11 July.
CO data from the AIRMAP network in New Hampshire
[DeBell et al., 2004] has been used in the past to show the
influence of Canadian fires on the northeast United States
during the summer of 2002. Analysis of the AIRMAP data
for the summer of 2004 (http://soot.sr.unh.edu/airmap/
archive/) shows none of the extreme CO events seen in
2002. The one clear case of enhanced fire CO occurs on
11 July (at Mount Washington), the same day that Warneke
et al. [2006] show the influence of the fires in near-surface
air. The dates for the analysis used in this study are from
14 July to 17 August, thus avoiding the largest impact of
the wildfires on the surface comparisons. Minor contribu-
tions from wildfires on PM2.5 levels at the surface sites
cannot be entirely discounted, though their impact is
minimized by the time interval used in the comparisons.

3. Evaluation of Several PM2.5 Forecasts Using
Summer of 2004 AIRNow PM2.5 Data

[13] Latitudes and longitudes of 128 AIRNOW PM2.5

monitoring stations falling within the domain of analysis are

mapped into the model grid coordinates of each model. For
all models observed PM2.5 values are compared against
model grid values that contain the monitor. In other words
no spatial interpolation is performed on the model results,
but depending on model resolution, PM2.5 from several
stations could be evaluated against results from only one
model grid.
[14] The AIRNOW observations are reported as hourly

averages centered on the half hour, and some temporal
averaging of model results is necessary to allow for consis-
tent comparisons. The CMAQ/ETA model provides results
already averaged over these hourly periods. The WRF,
STEM-2K3, CHRONOS, and AURAMS model results
come as snapshots at the top of each hour. For these models
the hourly average centered at the half hour is taken as the
average of the two adjacent hourly snapshots. With data for
all models available on a uniform time base an equal-
weighted ensemble forecast is also generated by calculating
the arithmetic mean of 6 individual models. The WRF-1
model is not included in the ensemble because of its older
emission inventory and other deficiencies within its PM2.5

formulation, as discussed further below. Ensembles based
on the geometric and arithmetic means of the 6 models are
also calculated, and results for these ensembles are also
shown for comparison.

3.1. Observations and Details of Analysis of AIRNOW

[15] PM2.5 data for the months of July and August of
2004 were provided by Sonoma Technologies Corporation
through the EPA AIRNow program. All measurements are
made using tapered element oscillating microbalance
(TEOM) instruments, averaged over hourly intervals from
the top of one hour to the next. It should be recognized that
TEOM measurements are somewhat uncertain, and believed
to be lower limits because of volatilization of soluble
organic carbon species in the drying stages of the measure-
ment [Eatough et al., 2003; Grover et al., 2005]. No attempt
is made here to account for this uncertainty, and measure-
ments are used ‘‘as is.’’ The location of the 128 stations
within the domain of model overlap is shown in Figure 2
along with some information from AIRNow on surrounding
population.
[16] The 35 day period between 0000 Z 14 July 2004 and

0000 Z 17 August 2004 (0000 Z refers to Zulu, or Universal

Figure 1. Location of forecast model domain boundaries.
The STEM-2K3 model boundaries determine the domain
used in the analysis.

Figure 2. Location of AIRNow sites providing real-time
PM2.5 data to Sonoma Tech.

D10S20 MCKEEN ET AL.: PM2.5 FORECAST MODEL EVALUATION

4 of 20

D10S20



Time Coordinated) is the sampling period used in this
analysis, corresponding to data availability of CMAQ/
ETA. The statistical evaluation is for results from the
0000 Z forecasts, except for the CMAQ/ETA model, which
only provided 1200 Z forecasts. One day (1 August) was
missing from the CHRONOS 0000 Z forecast, leaving
34 days with coincident, and 6-member ensemble results.
Two sets of analysis are presented here; one set giving spatial
information on common statistical measures (r-coefficients,
bias and RMSE), and another set that looks at average
diurnal cycles for each model compared to observations.
[17] For the spatial analysis, daily values of 8-hour

afternoon average PM2.5 (1400 Z to 2200 Z), and daily
average (midnight to midnight LT) are calculated from the
hourly PM2.5 observations and compared with similar
averages from each model. There are three reasons for
comparing afternoon averages. First, the observed afternoon
values are representative of a larger footprint during this
time of day, due to efficient boundary layer mixing, and
therefore provide the best conditions for comparison to
models having 12 to 42 km horizontal resolutions. Second,
as will be discussed below with regard to diurnal variations,
some models show distinct positive PM2.5 biases during
morning rush hour peaks in urban and suburban regions that
tend to skew statistics that include the 0600 to 1000 LT data.
Third, and importantly, it is of interest to compare statistical
measures for PM2.5 with those of O3 within a similar diurnal
context. The maximum 8-hour average O3 is the quantity of
interest in terms of regulatory and health advisory issues,

and this has been the quantity used in previous statistical
evaluations [McKeen et al., 2005, and references therein].
The timing of the maximum 8-hour average O3 values tend
to center between 1400 and 1500 local time (LT) for the
companion O3 statistics presented here, and thus the choice

of the 1400 Z to 2200 Z averaging window for PM2.5. If a
monitor has less than 6 hours of data available between
1400 Z and 2200 Z, the data for that day are discarded.
Statistics for the 24 hour average are also shown here, since
the 24 hour average is used for regulatory and compliance
purposes by the U.S. EPA. Statistical results are calculated
only for monitors and days when forecasts from all six
models as well as observations are available, and are
restricted to 118 sites that have 20 or more days of
observations that fit the above criteria.

3.2. Spatial Analysis of 8-Hour PM2.5 Averages

[18] Frequency distributions of PM2.5 and O3 are shown
in Figure 3 for the observed 8-hour PM2.5 averages and
maximum 8-hour averages of O3 between 6 July 2004 and
30 August 2004, and for monitors available within the
domain shown in Figure 2. The frequency distribution for
O3 is nearly Gaussian and symmetric about a central value.
The frequency distribution of PM2.5 is decidedly non-
Gaussian, and a chi-square analysis shows that its frequency
histogram approximates a lognormal distribution more
accurately than a standard Gaussian. For this reason statis-
tical comparisons are performed on the log of PM2.5

concentrations, rather than the concentration levels them-
selves, as is typically done for O3.
[19] The following statistical measures are therefore

used in the spatial analysis and are modifications to the
standard bulk statistical measures used by McKeen et al.
[2005] to account for log-scaling of PM2.5:
the r-correlation coefficient:

r ið Þ ¼

X
days

Fmodl i; dayð Þ � Fmodl i; avgð Þ
� �

Fobs i; dayð Þ � Fobs i; avgð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
days

Fmodl i; dayð Þ � Fmodl i; avgð Þ
� �2X

days

Fobs i; dayð Þ � Fobs i; avgð Þ
� �2s ; ð1Þ

the model/observed ratio;

Md=Ob Ratio ið Þ ¼ exp

1:
Ndays

� �P
days

Fmodel i;dayð Þ�Fobs i;dayð Þ½ �
	 


; ð2Þ

Figure 3. Sorted frequency histograms of PM2.5 and O3 between 6 July 2004 and 30 August 2004 for
all monitors in the domain of Figure 2 (128 PM2.5 monitors, and 358 O3 monitors).
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and the ratio-equivalent root mean square error;

ratio RMSE ið Þ ¼ exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:

Ndays

� �P
days

Fmodel i;dayð Þ�Fobs i;dayð Þð Þ2
r( )

; ð3Þ

where F is the natural logarithm of the PM2.5 concentration,
i refers to PM2.5 monitor i (i = 1 to 118), Ndays refers to
number of observing days at each site, ‘‘obs’’ refers to
observed, and ‘‘model’’ or modl refers to model value. It is
important to note that the Md/Ob ratio and the ratio RMSE
values are multiplicative equivalents to mean bias and
RMSE, and a value of one for these quantities means no
bias and perfect agreement, respectively. The ratio RMSE
value is a measure of the distance from the one-to-one line
on a log-log plot of model versus observations, or a
multiplication/division factor, rather than an addition/
subtraction constant associated with the standard RMSE.
[20] Table 1 gives median values of the log-scaled PM2.5

statistical parameters for the various models and the two
ensembles for all monitors shown in Figure 2. Also listed is
a skill factor (in percent). This is defined as the percentage
of monitor comparisons for a given model that has lower
ratio RMSEs than for persistence (or simply the previous
day’s 8-hour average). A skill factor greater than 50%
means more than half of the model results have lower mean
errors compared to persistence, and therefore the model
possesses some skill. Also included in Table 1 are equiva-
lent statistics for O3 [McKeen et al., 2005] for the 342
AIRNow O3 monitors that are within the domain limits of
Figure 2, and for the same time period as the PM2.5

comparisons. Because of the log scaling for the PM2.5

statistics, mean biases and RMSE cannot be compared
between O3 and PM2.5, but the r-coefficients and skill
factors can be. The r-coefficients for PM2.5 are significantly
reduced compared to the O3 r-coefficients for the three
WRF/CHEM models and AURAMS, slightly reduced for
CHRONOS, but slightly better PM2.5 r-coefficients for the
STEM and CMAQ/ETA models. The skill factors are
always higher for PM2.5 compared to O3. As discussed by
McKeen et al. [2005], the high O3 bias in all models directly
affect RMSE, keeping O3 skill scores unacceptably low, but
useful forecasts are still possible with simple bias correc-
tions. The PM2.5 forecasts, on the other hand, show low bias
(within 25% of unity) for all models but the WRF/CHEM-2

12 km case, resulting in skill scores for all but 2 of the
WRF/CHEM models that match or beat persistence. Also,
similar to the results given by McKeen et al. [2005], the
ensemble PM2.5 forecasts show improved r-coefficients
compared to any single model.
[21] The results of Table 1 show that 4 models (CHRO-

NOS, CMAQ/ETA, STEM-2K3, and WRF/CHEM-2) are
quite similar in terms of the three statistical measures, while
the AURAMS, WRF/CHEM-1, and WRF/CHEM-2 (12 km)
models show reduced performance. This is shown graph-
ically with the summary statistics for r-correlation coeffi-
cients in Figure 4. Figure 4 also shows the obvious
improvement of both ensemble calculations compared to
the other individual models. The geometric mean ensemble
appears to perform slightly better than the arithmetic mean
ensemble, especially for lower values of the r-coefficient
[22] Figure 5 shows the spatial pattern of the statistical

parameters in Table 1 for the arithmetic mean ensemble
forecast. The ensemble statistics represent a collective
understanding (or misunderstanding) of the suite of models,
though patterns shown in Figure 5 are generally represen-
tative of individual models. Figure 5 shows a fairly hetero-
geneous distribution of r-coefficients, but overall low bias
except in isolated urban source regions (New York City,
Boston, Toronto, Detroit). The ratio RMSE is highest for

Table 1. PM2.5 Statistics for 8-Hour Averages (1400 Z to 2200 Z) and Maximum 8-Hour Average O3 From the AIRNow Surface

Networks for the 118 PM2.5 Monitors and 342 O3 Monitors for the 14 July 2004 Through 17 August 2004 Time Perioda

Institute, Model, Horizontal Resolution

PM2.5, Log-Transformed, Statistics O3 Standard Statistics

r Coefficient
Modl/Obs
Ratio RMSE (Factor) Skill, % r

Bias,
ppbv

RMSE,
ppbv Skill, %

NOAA/ESRL, WRF/CHEM-1, 27 km 0.42 1.17 2.19 33 0.67 14.3 20.9 24
NOAA/ESRL, WRF/CHEM-2, 27 km 0.64 0.81 1.97 64 0.73 3.4 11.6 61
NOAA/ESRL, WRF/CHEM-2, 12 km 0.54 0.64 2.38 40 0.67 11.9 16.6 31
MSC Canada, CHRONOS, 21 km 0.65 0.77 2.14 50 0.68 17.0 23.2 16
MSC Canada, AURAMS, 42 km 0.46 0.85 2.16 59 0.54 5.9 16.2 27
University of Iowa, STEM, 12 km 0.63 1.12 1.97 70 0.60 26.4 31. 2
CMAQ/ETA, 12 km 0.65 0.76 2.03 60 0.63 13.4 17.9 24
Six-model arithmetic mean ensemble 0.73 0.89 1.78 76 0.76 10.2 15.0 47
Six-model geometric mean ensemble 0.74 0.79 1.83 73
Persistence (previous day observations) 0.38 1.0 2.13 50% 0.48 0.0 13.7 50

aAll quantities except skill are median values for the number of monitors in each network.

Figure 4. Sorted PM2.5 r-correlation coefficients for the
models, ensembles and persistence for the monitors in
Figure 2 and data summarized in Table 1.
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locations with either very low or very high bias. Figure 5
suggests that as a whole, the PM2.5 models are under-
predicting PM2.5 over the larger, regional scale, and signif-
icantly overpredicting PM2.5 in only a few isolated urban
regions. As mentioned previously, the measurements are
from TEOM and are considered to be lower limits. The
underprediction by models is likely more severe than this
analysis suggests. As discussed later in section 4.2, one
possible cause of the low bias is underestimation of partic-
ulate organic carbon (POC) by the models.

[23] The reason for differences in performance between
the individual models needs further explanation that only
the forecast centers can provide. There are valid explan-
ations for the relative performance of the WRF/CHEM
models. First, the WRF-Chem/1 emissions are based on
the EPA NET-96 emissions inventory for the United States,
and a 1985 base year inventory for Canada. WRF/CHEM-2
emissions are from the EPA NEI-99 inventory for the
United States and a 2000 base year inventory for Canada.
The older inventory used in WRF/CHEM-1 has urban
PM2.5 emissions more than a factor of 2 higher than in
the NEI-99 inventory for the United States, and differences
for Canadian cities are more on the order of a factor of 4.
Additionally, the deposition velocity for PM2.5 in WRF/
CHEM-1 was specified incorrectly, giving too high of
deposition velocities for this model. The WRF/CHEM-2
(12 km) model differs from the WRF/CHEM-2 (27 km) in
horizontal resolution, the other difference between these
models is with the parameterization of PBL transport. As
discussed further below with regard to comparisons with
aircraft data, the 27 km versions of WRF/CHEM use the
original default for PBL transport, the Mellor-Yamada-
Janjic (MYJ) scheme with order 2.5 closure [Janjic,
2002]. This parameterization was found to predict PBL
heights that were too low, PBL temperatures too low, and
high PBL water vapor and cloud biases when compared to
NOAA WP-3 aircraft observations collected during the
ICARTT/NEAQS-2K4 field experiment. For this reason
the PBL scheme of Hong and Pan [1996] also known as
the YSU (Yung Sun University) scheme, was used within the
WRF/CHEM-2 (12 km) model. Using this scheme results in
more consistent PBL heights, but with significant positive
temperature and low relative humidity biases near the
surface. All WRF/CHEM models use the same land surface
model (LSM) of Smirnova et al. [2000], though the numer-
ical coupling between the LSM and the two PBL parameter-
izations may require further inspection and refinement and
may influence the PBL meteorological biases. Using the
YSU scheme with deeper boundary layers makes overall
PM2.5 bias lower than the MYJ scheme, and it also appears
to degrade the r-correlation comparisons.
[24] Because regulatory and compliance issues associated

with PM2.5 are based on 24-hour averages, it is useful to
compare forecast statistics based on this quantity. Table 2
shows the equivalent statistics based on 24-hour averages
(midnight to midnight LT) that are given for the 8-hour
averages in Table 1. In general the correlation coefficients
based on the 24-hour averages are not significantly different
than those for the 8-hour averages, except for the persis-
tence forecast which is much higher. Median model/
observed ratios are noticeably higher for the 24-hour average
comparisons for the WRF/CHEM-2 (12 km), CHRONOS
and CMAQ/ETA models. As shown in the next section these
three models overpredict the observed early nighttime and
postsunrise peaks in PM2.5, while the other models do not.
RMSE factors within Table 2 are somewhat lower than those
for the 8-hour average statistics in Table 1 for all models and
ensembles, but the RMSE factor for the persistence forecast
is significantly lower. The net result is that the skill (fraction
of monitors with RMSE less than that of persistence) is
reduced significantly for all models and ensembles. The
persistence forecast is so successful for the 24-average

Figure 5. Spatial patterns of r-coefficients, Model/Obs.
ratio, and the ratio RMSE for PM2.5 from the arithmetic
mean ensemble forecast.
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PM2.5 that only the model ensembles and one model forecast
(STEM-2K3) possess forecast skill, using the definition of
skill applied here.

3.3. Analysis of Diurnal Variations at the
AIRNow PM2.5 Monitors

[25] In this section the data from the 128 AIRNOW
monitors are segregated into urban (56), suburban (42),
and rural (20) stations (see Figure 2), and the average
diurnal cycles for each of these three classes of stations
are analyzed. Two sets of analysis are presented. One is
based on a ‘‘diurnal factor’’ that is calculated according to a
24-hour running average centered on any given. The second
is based on time the diurnal cycle of the geometric means of
the hour-specific PM2.5 concentrations themselves. The
diurnal factor is defined as follows, for the model or
observed value at hour t, and monitor i:

Diurnal Factor t; ið Þ ¼ PM2:5 t; ið Þ � 24 obs:=dyð ÞXtþ12hour

t�12hour

PM2:5 t0; ið Þ
: ð4Þ

Examples of the median and mean diurnal factors from the
observations are shown in Figure 6.
[26] A large fraction of monitors is in the urban and

suburban categories within Figure 2, and the diurnal factors
for the suburban stations are nearly identical to the urban
diurnal factors (and are not shown). The diurnal factors for
all stations combined are very similar to the urban factor.
The morning peak (1300 Z, or 0900 to 1000 LT), followed
by a sharp decrease due to boundary layer growth and
dilution, stands out in the urban category, and is much less
apparent in the rural category. The peak in urban PM2.5 at
0200 Z (2200 to 2300 LT) can be attributed to evening
emissions within a stable surface layer, followed by PM2.5

deposition once these emissions subside. The peak to valley
differences of 
16% are much smaller than diurnal factors
calculated for O3 (peak to valleys from 1.6 to 0.4), and
standard deviations of the PM2.5 factors are very large
(0.38 averaged over all hours). The median and mean ratio
RMSE for persistence of the 8-hour average PM2.5 values
are both 2.1. This factor of 2 variability in the larger-scale
day-to-day forcing clearly dominates the diurnal variability
displayed by the averages in Figure 6. The opposite is true
for O3. The O3 RMSE from persistence is 
9.5 ppbv, while
average peak to valley differences are 30 ppbv.

[27] Figure 7 shows the model median diurnal factors
overlaid on the diurnal factors from the observations in
Figure 6. It should be kept in mind that these diurnal factors
only provide a relative, normalized view of the impact that
several processes are having on the diurnal cycle. One also
needs to look at the absolute average diurnal variation,
shown in Figure 8, to use the diurnal cycle information
diagnostically. The unrealistically high deposition velocity
for WRF/CHEM-1 shows up clearly in Figure 7, along with
the overestimated urban and suburban emissions during the
morning rush hour. The strong and persistent draw down of
WRF/CHEM-2 (12 km) from early to midmorning reflects a
strong nighttime inversion and trapped emissions followed
by rapid PBL growth and subsequent dilution associated
with the YSU boundary layer parameterization. The timing
of the morning peak is quite different between models. For
the urban and suburban averages the WRF/CHEM 27 km
and Canadian models tend to peak an hour earlier than the
observations, while the CMAQ/ETA and WRF/CHEM
12 km model peak 2 hours early, and the STEM-2K3 shows
no morning buildup. All models except WRF/CHEM-1 tend
to show the evening buildup, but CHRONOS (suburban
only), WRF/CHEM-2 (12 km) and particularly CMAQ/ETA
do not capture the decrease from 0100 to 0600 LT. The
diurnal factors for the rural sites are not as clear cut, most
likely because of the added importance of timing and
meteorology that define source-receptor relationships at
the limited number of rural sites (20).
[28] Figure 8 shows the diurnal geometric averages of the

0000 Z forecast models for all times available in the
forecast. CMAQ/ETA only has the 1200 Z forecast avail-
able for this comparison. Figure 8 generally reflects the
information in Figure 7, but there are a couple of additional
interesting aspects within Figure 8. The observed median
levels for rural sites are only 2 to 3 mg/m3 less than the
observed levels at urban/suburban sites, but all models show
markedly lower rural PM2.5 levels compared to those at
urban/suburban sites. For the urban and suburban compar-
isons all models show a decrease in the second-day averages
compared to the first, indicating trends in the biases.
Previous NEAQS-2K2 analyses of MM5, WRF, and
CMAQ/ETA meteorology also show trends in temperature
and wind biases as well, but it is unclear how meteorolog-
ical bias trends would affect PM2.5 bias trends, and why all
models would have the same trend. Finally, STEM-2K3 and
the WRF/CHEM-2 models use the same anthropogenic
emissions inventory for PM2.5, SO2, NOx, and VOC.

Table 2. PM2.5 Statistics for 24-Hour Averages (Midnight to Midnight EST) From the AIRNow Surface

Networks for the 118 PM2.5 Monitors for the 14 July 2004 Through 17 August 2004 Time Perioda

Institute, Model, Horizontal Resolution

PM2.5, Log-Transformed, Statistics

r Coefficient Modl/Obs Ratio RMSE (Factor) Skill, %

NOAA/ESRL, WRF/CHEM-1, 27 km 0.51 1.11 1.96 21
NOAA/ESRL, WRF/CHEM-2, 27 km 0.63 0.81 1.86 33
NOAA/ESRL, WRF/CHEM-2, 12 km 0.49 1.08 2.03 22
MSC Canada, CHRONOS, 21 km 0.69 0.94 1.96 28
MSC Canada, AURAMS, 42 km 0.51 0.93 1.92 36
U of Iowa, STEM, 12 km 0.69 1.15 1.77 51
CMAQ/ETA, 12 km 0.60 0.94 1.79 41
Six-model arithmetic mean ensemble 0.72 1.03 1.68 66
Six-model geometric mean ensemble 0.74 0.94 1.69 64
Persistence (previous day observations) 0.49 1.0 1.77 50

aAll quantities except skill are median values for the number of monitors in each network.
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However, there are significant difference in the diurnal
profiles and averages, particularly for the rural sites. This
suggests that model processes other than emissions are
significant contributors to absolute PM2.5 levels.

4. PM2.5 Forecast Model Evaluation Using NOAA
P-3 Aircraft Data

[29] During the summer of 2004 the ICARTT/NEAQS-
2K4 intensive field study was operational for roughly the
5 July to 15 August time period. Mobile platforms partic-
ipating in the field study include thirteen aircraft and the

NOAA Ronald H. Brown research vessel (http://www.al.
noaa.gov/csd/2004/rhbplatform.shtml). Two aircraft (the
NASA DC-8 and the NOAA WP-3) along with the RV
Ronald H. Brown included aerosol composition and aerosol
size measurements within their payloads. The NOAAWP-3
aircraft in particular spent a significant fraction of its
allotted flight hours immediately upwind, within and down-
wind of the New England region. The WP-3 aerosol

Figure 7. Median diurnal factors for the seven PM2.5

forecast models compared to observations for the three
different monitor categories. The color and line type
assignments are the same as in Figure 4. Observed factors
are given by the black line with open circles.

Figure 6. AIRNow observations only. Median and mean
diurnal PM2.5 factors (top) for all PM2.5 monitors, (middle)
for only rural monitors, and (bottom) only urban monitors
shown in Figure 2.
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composition data therefore provide valuable observations
with which to compare forecast model PM2.5 composition,
particularly since information on the vertical distribution of
aerosol species is very limited. Further details related to the
design and coordination of the experiment, and the role of
the NOAA WP-3 aircraft within the suite of mobile plat-
forms can be found at http://www.al.noaa.gov/2004.
[30] In late March of 2005 most of the data sets collected

by the NOAA W-P3 were finalized and made available to
experiment participants. A public Web site (http://esrl.noaa.
gov/csd/ICARTT/modeleval/) was constructed that overlays
results from 9 AQ forecast models with results from the
NOAAWP-3 aircraft and RV Ronald H. Brown. Thousands

of plots are available at this site showing day-by-day
comparisons for the Ronald H. Brown and every vertical
profile and horizontal transect of the 17 NOAA WP-3
flights for several chemical, meteorological, aerosol and
radiation variables (O3, CO, NO, NO2, NOy, HNO3, PAN,
NOx, NO3, N2O5, SO2, NH3, PM2.5 composition (SO4

2�,
NH4

+, organic carbon (POC), NO3
�, elemental carbon (EC)),

total sulfur, isoprene, CH3CHO, C2H4, C3H6, toluene,
xylenes, CH3COOH, temperature, virtual potential temper-
ature, H2O, relative humidity, wind speed, wind direction,
solar radiation, JNO2, sea surface temperature). Along with
the detailed comparisons, a set of summary statistics for
each of the nine models, and for each of the variables, is
also provided for the NOAA WP-3 aircraft data. The
following analysis is based upon the summary WP-3
statistics provided in the evaluation Web site, and the reader
should consult this site for statistical comparisons of the
individual models for the 23 variables that are not covered
here.

4.1. Observations and Details of Analysis

[31] This section focuses on the comparison of PM2.5

composition between six PM2.5 forecast models and data
collected on board the NOAA WP-3 aircraft. Size (and
volume) distribution measurements of aerosol were made
aboard the NOAA P-3 at 1 s time resolution by laser optical
particle counters, similar to the measurements made during
the ITCT 2002 field project [Brock et al., 2004]. The aerosol
size cutoff is 
1.0 mm diameter for this technique, a fixed
refractive index for all particles is assumed, and a density of
1.6 g/m3 is assumed in order to convert size distribution
data to mass mixing ratio. It is therefore important to keep
in mind that the PM2.5 comparisons shown here have large
inherent uncertainties (estimated to be 30–40%). The 90-s
samples from the PILS (particle-into-liquid sampling) meas-
urements [Orsini et al., 2003; Weber et al., 2001] form the
observational basis of the aerosol composition comparisons,
and six PM2.5 forecasts are analyzed in terms of bias. All of
the models evaluated in section 3, except the WRF/CHEM-1
model, are also evaluated in this section. Data from 15 flights
between 15 July and 15 August 2004 and for flight tracks
within the area of model overlap used by McKeen et al.
[2005] are analyzed here in order to provide compatible
statistics with that study and the preceding evaluation of the
AIRNow PM2.5 surface network.
[32] Numerically, comparisons are done by flying the

aircraft through each model domain using the three-dimen-
sional model field specific to each flight, and for the nearest
hour of model output. If the aircraft flies through a model
grid cell, the observational average is calculated for the time
spent in that grid, and the model value at the nearest hourly
time slice for that grid is also recorded, regardless of the
time spent in the grid cell. If the sample time overlaps two
model grids then both model grid values are compared
against the observed average over the sample time. Similar
to the surface comparisons described previously, there is no
interpolation of model or observed data either in space or
time in the comparisons. Further refinements to the compar-
isons should include a more rigorous way of limiting
comparisons to well sampled grid cells, or weighting of
averages according to time spent in grid. Here we rely on
comparisons of median values or median errors which

Figure 8. Diurnal averages (geometric means) for the
seven PM2.5 forecast models compared to observations for
the three different monitor categories. The color and line
type assignments are the same as in Figure 4. Observed
factors are given by the black line with open circles.
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should be relatively insensitive to these sampling and
averaging issues.
[33] Median vertical distribution of PM2.5 components for

the 6 PM2.5 forecast models and observations, as well as the
median model over observed ratios, are given in the model
evaluation web site (http://esrl.noaa.gov/csd/ICARTT/mod-
eleval/) for three data windows; inland-daytime, coastal-
daytime, and for all data. Figure 9 shows the limits of the
inland-daytime window, and an example (CHRONOS) of
PM2.5 SO4 median profiles taken from the Web site. This
window is designed to compare profiles and model statistics
for inland conditions unaffected by the coast. Since many
flights were nighttime flights, and several flights focused on
downwind pollution from Boston and New York, this
window only comprises 
11% or 13 hours of NOAA
WP-3 flight time from the 15 flights. Also excluded are
measurements influenced by Alaskan and Canadian forest
fires as determined by acetonitrile measurements from the
PTRMS instrument [de Gouw et al., 2006], mostly above
2 km altitude.

4.2. Results of NOAAWP-3 Comparisons

[34] Figure 10 shows the vertical distribution of median
model over observed ratios for the inland-daytime window
and for the six PM2.5 forecast models. All models tend to
overestimate SO4 above 2 km altitude, and below this
height three of the models overestimate SO4 by a factor
of 2 or more. Only the WRF/CHEM-2 12 km model
underestimates SO4 below 2 km significantly, though the
coastal-daytime window (not shown) does not show the low
bias or error gradient indicated in Figure 10 for this model.
[35] In order to relate upper air model comparisons with

the statistics derived from the surface networks a more useful
window of data is made by limiting comparisons to daytime
(1100 to 1800 LT), over land and at lower altitudes (between
410 and 670 m above ground). The spatial distribution of
this data set is shown in Figure 11. It comprises 4.5 hours or
about 4% of available flight data. Data sampling is heavily
weighted to the flights of 25 July 2004 (46%), 20 July
(23%), 15 July (17%), and 22 July (9%).

[36] Figure 12 summarizes several comparisons related to
the partitioning of sulfur and ammonia between the gas and
particulate phase that are posted on the evaluation web
page. The comparisons for total sulfur (SO2 + SO4, in ppbv)
show that all models tend to overpredict total sulfur by a
minimum of 40% and up to a factor 3. One possible
explanation is that emissions inventories of total sulfur are
simply too high. However, total sulfur for any given model
is a balance between emissions, vertical transport, rainout
and deposition. Notice that sulfur emissions within WRF/
CHEM and STEM-2K3 are identical, and the emissions
within AURAMS and CHRONOS are identical, but large
differences in the median ratios are shown for models with
similar emissions.
[37] For CHRONOS and the WRF/CHEM models the

overestimates of total sulfur are associated with overesti-
mates of SO2. For AURAMS, CMAQ/ETA and STEM-2K3
the total sulfur estimate has a significant contribution from
overestimated PM2.5 SO4. These three models include cloud
oxidation of SO2 into PM2.5 SO4 within their chemical
mechanisms, while the other three models do not. Figure 12
therefore strongly suggests the 3 models with overestimated
SO4 have too much SO2 cloud oxidation occurring in their
simulations either from too much cloud, or too high an
oxidation rate. Figure 13 illustrates this point more dramat-
ically by comparing SO2/(total sulfur) ratios for two repre-
sentative models. The CMAQ/ETA model clearly under-
estimates this ratio, which is probably because of too fast or
effective cloud oxidation. The WRF-Chem model under-
estimates SO2 conversion to sulfate, but further model
evaluation is needed to determine if this is because gas
phase oxidation rates are too slow in this model (a defect in
the photochemical formulation) or naturally occurring cloud
oxidation is not included in the WRF/CHEM formulation,
or both. Likewise, there is also the possibility that those
models which include aqueous phase oxidation are over-
predicting gas phase oxidation, or that the WP-3 aircraft
undersampled cloud-processed air by attempting to avoid
clouds. Further analysis focusing on the relative role of gas

Figure 9. (left) Spatial extent of the inland-daytime window. (right) Median vertical profile of the
observations (blue) for the inland-daytime (1100 to 1800 LT) window and the median model profile for
CHRONOS (red) with the central two thirds of the model data given by the red bars.

D10S20 MCKEEN ET AL.: PM2.5 FORECAST MODEL EVALUATION

11 of 20

D10S20



phase versus aqueous phase sulfate formation is needed to
unequivocally assign specific defects in these models.
[38] Figure 12 also shows the effect that model predicted

sulfate levels have on ammonia partitioning between the gas
and particulate phase. The CMAQ/ETA model has no gas
phase ammonia as all ammonia partitioned to the aerosol
phase due to the high sulfate coupled with the equilibrium
assumptions within the aerosol formulation. It is important
to note that the observations are almost always in an
ammonia rich regime relative to ammonium sulfate ((NH3 +
NH4)/SO4 � 2 on a molar basis) with a median ratio of 3.8.
The high sulfate in CMAQ/ETA puts that model into an
ammonia poor regime (median (NH3 + NH4)/SO4 molar
ratio of 
 1.). The WRF/CHEM-27 km model shows
agreement for median NH3 and NH4 conditions, but large
variation in model errors leads to very little correlation with
the observations of total NH3. Similar to the observations
the WRF/CHEM-2 27 km and 12 km models are both in an

ammonia rich regime with median (NH3 + NH4)/SO4 molar
ratios of 4.1 and 5.1, respectively. However, the ammonia
partitioning in the WRF/CHEM-12 km model is clearly
overpredicting the gas phase, and the only significant
difference between the two WRF/CHEM models (other
than horizontal resolution) is with the parameterization of
boundary layer mixing. Temperature and water vapor biases
are quite different between the two models with the 27 km
WRF/CHEM-2 being too cold and humid on the median,
which increases partitioning of NH3 into the aerosol, and
the 12 km model being too warm and dry, especially for
daytime conditions of Figure 9 below 1 km (see the Web
page). Under summertime conditions ammonia partitioning
within WRF/CHEM is expected to have a strong depen-
dence upon ambient humidity [e.g., Yu et al., 2005]. Further
analysis shows that for this data window the 27 km WRF/
CHEM predicts 99.5% of the aerosol to be ammonia rich
(NH4/SO4 molar ratios greater than or equal to 2), but the

Figure 10. Vertical profiles of median model/observed ratios of PM2.5 sulfate for the inland-daytime
data window of the six forecast models. The central two thirds of the mode/observed ratios (within a
sorted histogram) is given by the vertical bars. Only model vertical levels with more than 20 comparison
points are shown.

D10S20 MCKEEN ET AL.: PM2.5 FORECAST MODEL EVALUATION

12 of 20

D10S20



12 km model predicts 
40% of the aerosol to be ammonia
rich. For the inorganic equilibrium solution method the drier
conditions of the 12 km WRF/CHEM limit the PM2.5 NH4

to sulfate ratio to less than 2, while the cold and moist
conditions of the 27 km WRF/CHEM allow incorporation
of NH4 and NO3 so that can exceed the NH4 to SO4 ratio
can exceed 2.
[39] Comparisons of particulate nitrate and organic car-

bon (POC) with the PILS measurements are shown in
Figure 14, along with the comparisons to total PM1.0

determined from the laser optical counters. As discussed
previously the PM2.5 comparisons are somewhat uncertain
because of the 1.0 mm cutoff of the sampling technique and
the assumption of particle density used to convert aerosol
volume to mass. Only two models (CMAQ/ETA and
STEM) show correspondence between the PM2.5 biases
shown in Figure 14 and the biases from the AIRNow
surface networks within Tables 1 and 2. AURAMS shows
much higher biases aloft compared to the surface, while
CHRONOS and the WRF/CHEM models show much lower
biases aloft. Though the contribution of NO3 to PM2.5 mass
is small and more than 80% the NO3 measurements were
below detection limit (0.1 mg/m3), all models underpredict
this component when measurements were above this limit.
This is despite the fact that HNO3 comparisons show that
AURAMS, CMAQ/ETA and WRF/CHEM-27 km overes-
timate gas phase HNO3 in the median. The numerical
solution of PM2.5 NO3 is determined by equilibrium and
ion balance conditions within the inorganic aerosol formu-
lation with ammonium nitrate as the particulate phase
intermediate. Although nitrate formation channels not in-
cluded in the models are possible (i.e., secondary organic
nitrate formation from VOC photochemistry), further anal-
ysis of model and observed PM2.5 nitrate availability under
conditions of strong acid displacement and ammonium

limitations are necessary to verify or eliminate this
possibility.
[40] The organic carbon comparisons in Figure 14 show

significant underpredictions of this component for all mod-
els, but for AURAMS and the WRF/CHEM models in
particular. The organic carbon errors in Figure 14 are upper
limits, since the PILS instrument detects only soluble
organic carbon. The WRF/CHEM models are expected to
underpredict POC since the RADM2 photochemical mech-
anism does not include monoterpene photochemistry, which
is a known biogenic pathway for POC formation. The
RADM2 mechanism is likewise expected to underpredict
secondary organic aerosol (SOA) formation from anthropo-
genic VOC oxidation relative to more up-to-date mecha-
nisms (RACM and SAPRC-99) because of its limited
treatment of anthropogenic VOC oxidation. The CMAQ/
ETA and STEM-2K3 models do include biogenic SOA
formation mechanisms but still underpredict POC by 40 to
50% for median conditions. As described by de Gouw et al.
[2005], POC levels observed aboard the NOAA RV Ronald
H. Brown during the 2002 NEAQS field study cannot be
explained by currently accepted SOA mechanisms for both
anthropogenic and biogenic conditions. Since POC slightly
outweighs sulfate as the dominant aerosol component for
the data window considered here, understanding the POC
underpredictions in Figure 14 could help explain a large
portion of the low PM2.5 biases evident in the rural PM2.5

comparisons in Figure 8, and also in Table 1.

5. PM2.5 Forecast Model Evaluation Using the
Surface Trends Network Data

[41] This section compares observations collected from
the EPA Speciation Trends Network (STN) with model
results from only three models, the two WRF/CHEM
version 2 models (27 km and 12 km horizontal resolution),
and the CMAQ/ETA model. As in previous comparisons the
time period of comparison is between 14 July 2004 and
17 August 2004. The STN observations are 24-hour filter
samples that are collected at over 200 sites throughout the
United States every 3rd or 6th day through the U.S. EPA Air
Quality System (AQS) (http://www.epa.gov/ttn/airs/airsaqs/
detaildata/downloadaqsdata.htm). For the STN data used
here field blank measurements that are sampler specific for
the entire network were averaged to arrive at an average
blank number, which was subtracted from the measured OC
on a daily basis (V. Rao, U.S. EPA, personal communica-
tion, 2006). Figure 15 shows the location of the various
STN monitor sites for the domain of model overlap applied
in this study. Many of the 76 STN monitors are colocated
with the PM2.5 monitors shown in Figure 2.
[42] Comparison results for the three models are shown

for five aerosol components in Figure 16. As in previous
comparisons results are shown in terms of median model to
observed ratios. When the results of Figure 16 are compared
with the results of Figures 12 and 14, there are distinct
qualitative differences between the upper air statistics and
the STN surface statistics for the WRF/CHEM models, but
no large qualitative difference for the CMAQ/ETA model.
For CMAQ/ETA the ammonium overestimate and organic
carbon underestimate are nearly identical between the two
comparisons, while median biases are significantly reduced

Figure 11. Location and time of NOAA W-P3 flights
between 1100 to 1800 LT, between 410 and 670 m radar
altitude, over land, and within the domain of model overlap.
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for sulfate and nitrate. For the WRF/CHEM models organic
carbon biases are similar to the upper air biases, but sulfate
is biased very low and nitrate is biased very high for the
STN comparisons, contrary to the upper air statistics in
Figures 12 and 14. While the negligible ammonium bias is
the same for the WRF/CHEM-27 km model, the WRF/
CHEM-12 km model is biased high for the surface compar-
isons and biased low for the upper air comparisons.

[43] The differences between upper air and surface com-
parisons for the WRF/CHEM models can be explained in
terms of the 24-hour averages used in the surface compar-
isons as opposed to only daytime comparisons for the upper
air data. As discussed in section 3, the WRF/CHEM models
tend to have shallow and nearly nonexistent mixing at night.
Since SO4 originates primarily from elevated point sources
of SO2, the nighttime decoupling of the surface and upper

Figure 12. Median model to observed ratios (dots) for (top left) SO2, (middle left) PM2.5 SO4, and
(bottom left) SO2 + PM2.5 SO4, (top right) NH3, (middle right) PM2.5 NH4, and (bottom right) NH3 +
PM2.5 NH4. The central two thirds of the sorted model error distribution are the vertical limits. Dotted
lines give the central two thirds of the sorted observation distribution relative to the observed median
listed on the right of each panel. The comparison window is the 1500 Z to 2200 Z, 410 to 670, inland
window shown in Figure 11. The number of comparison points in each comparison sample are listed
below each model acronym.

D10S20 MCKEEN ET AL.: PM2.5 FORECAST MODEL EVALUATION

14 of 20

D10S20



Figure 13. SO2/(total sulfur) ratios for the WRF/CHEM-12 km and CMAQ/ETA models. The
comparison data are for the same set used to derive Figure 12.

Figure 14. Median model to observed ratios (red lines) for (top left) aerosol NO3, (top right) aerosol
organic carbon, and (bottom) PM2.5 mass derived from size distribution measurements. The comparison
window, the meaning of lines, limits and values are the same as in Figure 12.
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layers in the WRF/CHEM models deplete surface layer
SO4, and also traps surface emissions of EC, ammonia and
NOx. The low sulfate, high humidity, ammonia, and gas
phase NO3 all contribute to ionic-equilibrium calculations
favoring nitrate formation in the nighttime surface layers of
the WRF/CHEM models. Ion balance diagrams show the
WRF/CHEM to be completely neutralized with nitrate as
the dominant anion. CMAQ/ETA shows much smaller
nighttime ammonia levels, acidic PM2.5 with sulfate as the
dominant anion, and very little ammonium buffering avail-
able for inclusion of nitrate.

[44] Median values of six model PM2.5 constituents are
compared to observed medians in Table 3 for two separate
categories of monitors in Figure 15. Medians for suburban
and urban monitors are very similar so results for these two
categories are combined, and compared to median rural
conditions in Table 3. The relative medians between models
and observations are generally representative of the median
ratios in Figure 16, and these medians can be considered
rough estimates of the median aerosol composition for the
observations and models. Also listed for the models are
median primary PM2.5 levels, which represent inert, unspe-
ciated primary PM2.5 included in the emission inventories of
the models. It is important to note that organic carbon in
Table 3 is expressed in terms of carbon only, and that
associated hydrogen and oxygen makes its relative contribu-
tion to PM2.5 mass larger by anywhere from 20 to 70% for the
models, and an unknown fraction for the observations.
[45] Table 3 again illustrates the low organic carbon

fraction within the models compared to observations. How-
ever, a fraction of primary unspeciated PM2.5 emissions are
expected to be in the form of organic carbon, which compli-
cates these direct comparisons. The CMAQ/ETA model also
shows too high a sulfate fraction, but otherwise appears to
match observed composition levels and fractions quite well,
especially compared to the WRF/CHEMmodels. Both of the
WRF/CHEM models underpredict sulfate, have nearly half
the mass contributions from primary unspeciated PM2.5, and
severely overpredict nitrate levels. As discussed above, the
combination of lack of vertical mixing, the shallowness of the
lowest model level (15 m), and evening emissions all
contribute to unrealistic surface concentrations that affect
24-hour averages, which also contributes to the high primary

Figure 15. Location and population description of the
76 EPA STN surface sites used in the model/observation
comparisons.

Figure 16. Median model to observed ratios of PM2.5 constituents for all data from the STN sites shown
in Figure 15. The meaning of lines, limits, and numerical values are the same as in Figure 12.
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PM2.5 and elemental carbon medians shown in Table 3.
Looking only at the observations, the organic to elemental
carbon ratios are nearly identical for the rural and the urban/
suburban categories. Since natural sources of elemental
carbon are thought to be negligible, the close association of
aerosol organic carbon with elemental carbon suggests an
anthropogenic origin of aerosol organic carbon for this
particular set of eleven rural STN sites. However, Figure 15
shows that a majority of these ‘‘rural’’ sites are located close
to urban or suburban settings. Biogenic contributions to
organic carbon for truly rural conditions may therefore be
underrepresented by the median values shown in Table 3.

6. Conclusions and Recommendations for
Improved PM2.5 Forecasts

6.1. Total PM2.5 Mass

[46] When afternoon, 8-hour average PM2.5 forecasts are
log-transformed (justified by the lognormal PM2.5 probabil-
ity distribution functions), the PM2.5 comparisons show
reasonable biases (on the order of 20% or less for 6 out
of 7 models), and correlations with observations that are
comparable or exceed similar correlations in ozone. Five of
the seven models exhibit low PM2.5 bias, while only the
earliest version of WRF/CHEM (using older emissions) and
the STEM-2K3 model show high bias. As discussed in
section 2.2, one caveat to the analysis is that effects of
Alaskan/Canadian wildfires may have on PM2.5 levels and
model comparisons in the northeast United States. While the
choice of dates used this study should minimize their effect,
small but significant contributions during the last half of
June cannot be completely discounted. If skill is defined in
terms of fraction of comparisons having lower RMSE than
persistence forecasts, all PM2.5 forecasts show more skill
than the O3 forecasts, largely because of the relatively
higher biases for the case of O3 forecasts. From the
standpoint of summertime afternoon average PM2.5 concen-
trations, this would indicate that current PM2.5 models are
just as useful and accurate as current O3 forecast models.
Statistics based on 24-hour average PM2.5 levels generally
reflect those of the 8-hour averages. However, median
model/observed ratios increase significantly for those models
that overpredict the PM2.5 peak (0600 to 0800 LT) associ-
ated with emissions in the stable early morning boundary
layer. The skill of the 24-hour average forecasts is signif-
icantly less for all models and ensembles compared to the
8-hour forecasts. This is due to the definition of skill
(RMSE relative to previous day’s persistence forecast),
and the fact that persistence forecasts for 24-hour averages

have much lower RMSE (and higher correlation) than for
the afternoon 8-hour persistence forecasts.
[47] There are simple techniques that can be used to

improve the PM2.5 forecasts. Similar to results found for
O3, ensembles of the PM2.5 forecasts show significant
statistical improvement over any individual forecast.
Though not presented here, analysis of bias corrected
PM2.5 forecasts have also been performed where corrections
have been applied analogous to previous O3 bias removal
studies [McKeen et al., 2005; Wilczak et al., 2006]. For all
models and ensembles bias correction offers additional
improvement in RMSE and forecast skill.
[48] Analysis of the diurnal cycles from the AIRNow

PM2.5 monitors and comparison with model median diurnal
cycles illustrates some inconsistencies with certain processes
within the models and the observations. For example there is
very little diurnal variation in the median observed diurnal
cycles, but significant diurnal variability exhibited by the
CMAQ/ETA, WRF/CHEM-1, WRF/CHEM-2 (12 km), and
CHRONOS models. The variability within WRF/CHEM-1
can be attributed to older emission inventories overpredicting
urban PM2.5 emissions. The WRF/CHEM-2 (12 km) vari-
ability appears to be due to the utilization of the YSU PBL
parameterization within the WRF formalism. Further inves-
tigation is needed to understand the reasons for the high
diurnal variability in the CMAQ/ETA model results, which
could be due to the adopted PBL parameterization. The
diurnal cycles of both CMAQ/ETA and WRF/CHEM-2
(12 km) show a reduced role for aerosol loss, presumably
through surface deposition, during the late night and early
morning hours. The timing of midmorning drawdown asso-
ciated with PBL growth is also quite different between all
models and observations for the urban and suburban mon-
itors, and is typically too early by 1 or 2 hours.
[49] The TEOM instruments used in the analysis are

uncertain and probably represent lower limits to actual mass
loadings. Reducing measurement uncertainties of PM2.5

mass is a prerequisite to any effective model evaluation
studies, as well as compliance, trends, or management
issues. It would be very useful to have PM2.5 estimates
from the NOAA mobile platforms to contrast and compare
with the aerosol speciation data. Although size distribution
measurements are available from these platforms, there is no
direct information on particle densities to relate particle
mass and size distributions unambiguously.

6.2. Aerosol Composition

[50] From the NOAA WP-3 comparisons two inconsis-
tencies between models and observations are immediately

Table 3. Median Values for 24-Hour Averages From the STN Surface Network for the 60 Suburban and Urban Monitors, and the

11 Rural Monitors in Figure 15a

PM2.5 Component

Urban and Suburban Rural

ETA/CMAQ
WRF/CHEM

27 km
WRF/CHEM

12 km Obs. ETA/CMAQ
WRF/CHEM

27 km
WRF/CHEM

12 km Obs.

Sulfate 6.7 2.2 2.1 4.8 7.8 2.1 1.9 5.4
Ammonium 2.0 1.7 2.5 1.6 2.0 1.4 2.2 1.5
Nitrate 0.4 3.3 4.7 0.5 0.3 2.1 3.8 0.4
Organic carbon 1.0 0.5 0.4 2.6 0.6 0.3 0.2 1.5
Elemental carbon 0.6 1.3 1.2 0.6 0.3 0.6 0.4 0.3
Primary PM2.5 2.7 8.2 7.4 1.7 5.5 4.3

aAll units are in mg/m3 except for organic (and elemental) carbon, which is in mg-carbon/m3.
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apparent: (1) Organic carbon is underpredicted by all
models and (2) sulfate is overpredicted by those models
that include sulfate formation from SO2 cloud oxidation
within their formulations. Particulate organic carbon (POC)
and sulfate comprised the two largest components of dry
PM2.5 mass for almost all conditions encountered by the
NOAA WP-3 during the field program, illustrating the
importance for PM2.5 forecast models to correctly charac-
terize their relative contributions. One complication in
comparing model PM2.5 composition with observations is
the specification of a primary, unspeciated PM2.5 compo-
nent within the emissions inventory. This is usually a
significant portion of the model PM2.5 mass, and model
POC shortfalls could easily be explained by less than 50%
of this primary emission component.
[51] The models with smallest median underprediction of

POC (
45% for both CMAQ/ETA and STEM-2K3) include
more detailed mechanisms of secondary organic aerosol
(SOA) formation than the WRF/CHEM models. The WRF/
CHEM model with RADM2 photochemistry does not
include emissions or oxidation of biogenic monoterpenes,
which are known to be a significant source of SOA. The
RADM2 mechanism is also somewhat dated in terms of the
lumping scheme used for anthropogenic VOC oxidation,
and more efficient SOA formation from anthropogenic
VOCs can be expected from more up-to-date mechanisms
(e.g., RACM, CBM-Z, SAPRC). Improvements in WRF/
CHEM’s ability to reproduce POC levels should include an
upgrade to the current RADM2 mechanism.
[52] The fact that all models underpredict POC by at least

a factor of 2 demonstrates a need for further model
investigation, further updates and awareness of recent
experimental studies related to SOA formation, and further
analysis of the observations to indicate if the missing model
POC is of primary or secondary origin, or is from anthro-
pogenic or biogenic sources. The STN data shows a
correlation between POC and elemental carbon (EC)
when contrasting urban/suburban and rural sites, suggesting
a significant anthropogenic component of POC at the
11 ‘‘rural’’ STN sites considered here. Previous analysis
of secondary versus primary has shown a large fraction of
POC is secondary during the summer in the northeast [e.g.,
Yu et al., 2004; de Gouw et al., 2005]. Elemental carbon is a
useful marker for anthropogenic PM2.5 sources, and is
usually highly correlated with CO measurements. We there-
fore recommend analysis of EC and CO measurements
during intensive field missions, along with other markers,
in order to provide insight into biogenic versus anthropo-
genic, and primary versus secondary sources of POC for
conditions downwind of select urban and rural locations.
[53] All models tend to overpredict total sulfur (sulfate

plus SO2) as well as total ammonia (aerosol NH4 plus gas
phase NH3) within the lowest 1 km and for the data
windows considered here. One explanation is that emissions
of sulfur and ammonia are simply overestimated. However,
transport mechanisms, rainout and deposition processes in
the models also influence these combined species. The
results shown here (Figure 12) suggest that model differ-
ences affecting sulfur loss are significant, since two or more
models having the same sulfur emissions can have a factor
of two difference in the median model error of total sulfur.
Whether these model differences are related to model

parameterizations of transport, deposition and rainout, or
due to meteorological biases (e.g., differences in total rain
fall) is an open question.
[54] Those models that include SO2 cloud oxidation as a

source of sulfate clearly overpredict PM2.5 sulfate
(Figures 12 and 13) with CMAQ/ETA and AURAMS
having more than a factor of 5 median overprediction of
aerosol sulfate compared to aircraft measurements. Com-
paring the SO2 to total sulfate ratios with aircraft data shows
that SO2 conversion is occurring too rapidly or efficiently in
the CMAQ/ETA model. The surface STN data comparisons
show that sulfate is overpredicted by 
40% in the median at
the surface. One can infer that the source of this over-
prediction at the surface is due to the rapid SO2 conversion
in the upper levels seen in the WP-3 comparisons. The
WRF/CHEM models, which only include gas phase con-
version of SO2 to sulfate, show too slow or inefficient SO2

conversion in the upper levels. In order to estimate the
degree to which cloud versus gas phase SO2 oxidation
actually occurred, it is recommended that addition evidence,
possibly through hydrocarbon relationships from WP-3
observations and model results, be analyzed to look for
consistency between inferred gas phase VOC oxidation
rates and the SO2 to total sulfur ratios. Additional analysis
of the relative importance of gas phase versus aqueous
phase sulfate production in those models that include
aqueous phase production is also needed to unequivocally
assign specific defects their formulations.
[55] The high sulfate levels at upper levels in CMAQ/

ETA are reflected in the NH3 and NH4 errors (Figure 12)
with all available NH3 incorporated into the particulate
phase. The aircraft observations used in the daytime, inland
410 to 670 m window are ammonia rich relative to
ammonium sulfate (median (NH3 + NH4)/SO4 molar ratios
� 3.8), but the CMAQ/ETA results are ammonia poor
(median (NH3 + NH4)/SO4 molar ratio � 1.) because of
the high sulfate loading. The 40% median overprediction of
NH4 for CMAQ/ETA in the STN comparisons is roughly
consistent with the 40% overprediction of sulfate and the
degree of neutralization by NH4 seen in the observations.
The NH3/NH4 partitioning between gas and particulate
phase for the WRF/CHEM (27 km) model seems very
consistent with the observations for the daytime 410 to
670 m window, but the 12 km WRF/CHEM model shows
nearly all partitioning in the gas phase. The reason for this
appears to be due to a sharp sensitivity to ambient humidity
in the equilibrium solution of NH3/NH4 partitioning. Par-
ticulate NH4 is limited to ammonium sulfate ratios for the
drier conditions of the 12 km WRF/CHEM model, while the
moister conditions of the 27 km WRF/CHEM allows NH3

incorporation into the particulate phase above the fully
neutralized limit. This sensitivity of particulate NH4 to
different thermodynamic states, induced by the different
PBL mixing schemes, could be an artifact of the equilibrium
calculations for ammonia, nitrate and sulfate, and deserves
further investigation.
[56] Observations of particulate NO3 by the WP-3 aircraft

show low concentrations and small contributions to total
particulate mass, and were often times below the detection
limit of the PILS instrument. For times when observed
nitrate was appreciable all models tend to underpredict the
observations. Yu et al. [2005] show that summertime nitrate
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levels at the surface are highly dependent on total sulfate
and total ammonia for conditions near the surface, and the
overpredicted sulfate would certainly account for the low
bias of NO3 in CMAQ/ETA for both the aircraft and surface
STN monitor comparisons. The total absence of aerosol
NO3 in the comparison of the WRF models (Figure 12),
despite having gas phase ammonia and HNO3 available, is
not consistent with the limited observations. This could be
due to equilibrium assumptions within the inorganic aerosol
portion of the WRF/CHEM formalism, and further analysis
is needed to confirm this and identify the underlying
reasons.

6.3. PBL Mixing Parameterizations

[57] It is clear from raw model output, and from model
comparisons of primary emitted species (CO, NOy, VOC)
with observations taken aboard the Ronald H. Brown (see
the model evaluation Web page) that the WRF/CHEM
models have very little turbulent exchange below 200 m
during stable nighttime conditions, allowing pollutants to
build up to unreasonably high levels in the lowest model
level. Exacerbating the situation, the lowest model level of
WRF/CHEM is 15 m thick, which is half to a third of the
thickness of the other models considered here. As an online
model system, WRF/CHEM is forced to use the same
vertical mixing parameterization for the aerosol and chem-
ical species that is used for sensible heat and water vapor
transport in the thermodynamic portion of the weather/
chemistry forecasts. It therefore appears that PBL parame-
terizations applicable for meteorological forecasting within
WRF are not entirely consistent with PBL mixing of
chemical and aerosol components. The limitations and
artifacts of the PBL parameterizations within WRF/CHEM
during the night are detrimental to the 24-hour average
surface comparisons with the STN data by reducing the
transport to the surface of sulfate formed aloft, and by
trapping surface emissions of elemental carbon, as well as
NOx that contributes to high nitrate levels in the lowest
model level. Until this fundamental inconsistency in the
nocturnal PBL mixing within WRF/CHEM is identified and
resolved, model comparisons that rely on nighttime surface
model values are compromised.
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